Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Behavior of high burnup advanced fuels for LWR during design-basis accidents

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Sugiyama, Tomoyuki

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2015), Part.2 (Internet), p.10 - 18, 2015/09

Advanced fuels which consist of cladding materials with high corrosion resistance and pellets with lower fission gas release have been developed by utilities and fuel vendors to improve fuel performance even in the high burnup region and also raise the safety level of current nuclear power plants to a higher one. In order to evaluate the adequacy of present safety criteria and safety margins in terms of such advanced fuels and provide a database for future regulation on them, Japan Atomic Energy Agency (JAEA) has started a new extensive research program called ALPS-II program (Phase II of Advanced LWR Fuel Performance and Safety program). This program is primarily composed of tests simulating a reactivity-initiated accident (RIA) and a loss-of-coolant accident (LOCA) on high burnup advanced fuels shipped from European nuclear power plants. This paper describes an outline of this program and some experimental results with respect to RIA and LOCA which have been obtained in this program.

Oral presentation

Current status of fuel safety research at JAEA

Amaya, Masaki

no journal, , 

The objectives of the fuel safety research program at JAEA are to evaluate the adequacy of present safety criteria and safety margins, to provide a database for the regulation on improved fuels using new materials of cladding and pellet, and to provide reasonably mechanistic computer codes for regulatory application, in terms of light water reactor fuel. In this presentation, in addition to recent progress in the reactivity-initiated accident (RIA) and loss-of-coolant accident (LOCA) test programs, an overview of the current status of the fuel safety research at JAEA is described.

2 (Records 1-2 displayed on this page)
  • 1